Outlook on Power Market Adequacy Central Western Europe

May 2019

For Discussion Purposes

Study performed for ENGIE

Advisory and Advanced Analytics

Capacity Outlook: More than 90GW of today's reliable thermal capacity closed by 2030. Intermittent Wind and PV will double, increasing by more than 140GW.

Policy driven

Nuclear phase-out in **DE** (end of 2022) and **BE** (2025) Nuclear in France according to **RTE Ampere Scenario** (63.1 GW today and 48.5 GW in 2030)

RES Development

Entso-E TYNDP 2018 : Decentralized Generation Capacity installed in EU14 (modelling scope):

- PV 108 (350) GW in 2018 (2030),
- Wind Onshore 133 (191) GW in 2018 (2030),
- Wind Offshore 16 (58) GW in 2018 (2030)

Coal-based Generation

Policy driven

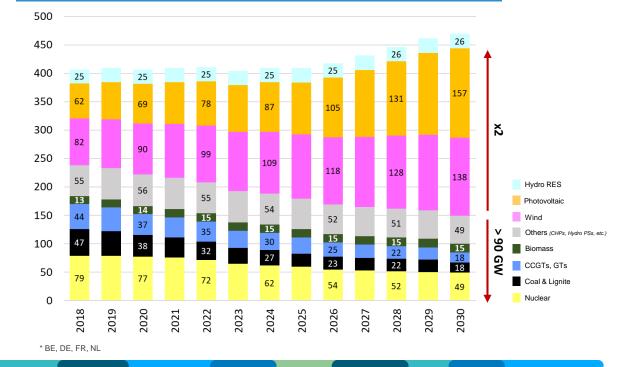
Coal is phased-out in **FR** (end of 2021), **IT** (2025), **UK** (non-CCS, 2025) and **NL** (2029). Technical lifetime of 40y in other countries (economic extensions not allowed).

Gas-based Generation

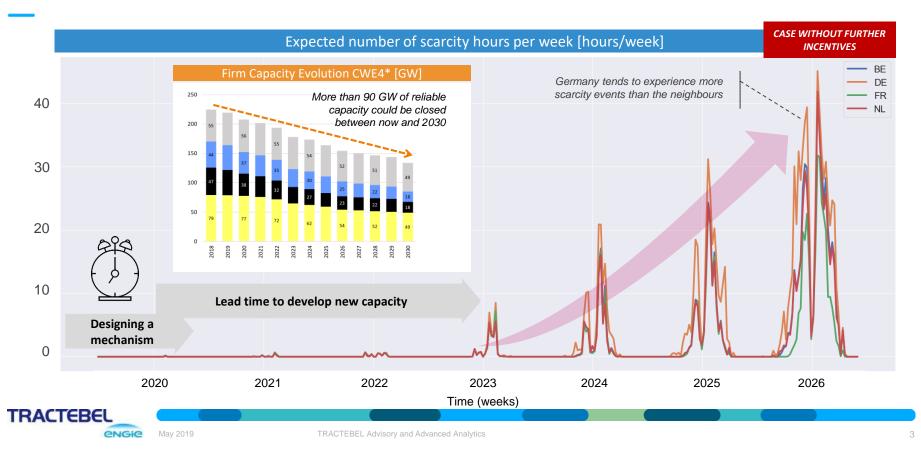
Technical lifetime

TRACTEBEL

Operation of existing assets, based on technical lifetime: CCGT 20y, GT 20y . A sensitivity is foreseen with economic asset management: lifetime extension, reconversion, brownfield development)


Demand & Peaks

IEA WEO 2017 New Policies Scenario


engie

CAGR 2018-30 : ~0.35% (both for annual and peak load)

Capacity Evolution RES & Existing Thermal - CWE4* [GW]

Without further incentives to keep existing or to build new reliable capacity, scarcity events tend to happen simultaneously across countries as of winter 2022-23.

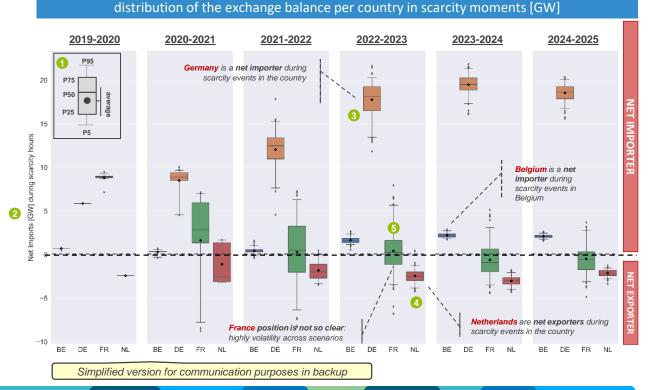
Power markets are highly interconnected. There are net providers and net importers of capacity at peak. CASE WITHOUT FURTHER

INCENTIVES

Probabilistic Approach

Accounting for meteorological uncertainty (wind & PV generation, water availability, demand) & unforeseen thermal power unavailability

Balances during scarcity moments


- Germany and Belgium are net importers of reliable capacity
- The Netherlands are net providers of reliable capacity
- France can be either net importer or exporter depending on the situation

engie

TRACTEBEL

We find that interconnection capacity is often not saturated. Hence, generation and not transmission capacity tends to be the scarce resource.

CWE4 Adequacy Outlook - Key Messages

- Outlook on power system adequacy in Central Western Europe (BE, DE, FR,NL): a regional issue
 - significant baseload capacity is leaving, driven by implemented or announced nuclear and coal phase-out policies
 - more renewables are needed to meet climate objectives, but also creating flexibility and reliability challenges
- National and regional adequacy studies do not give comfort, as they only provide a partial picture
 - they contain little or no information on effective use of transmission capacity and availability of foreign generation capacity
 - the outlook especially on nuclear and coal capacity is highly uncertain and thus varying a lot across studies
 - relevant years are not always considered in their assessment
- Our assessment strongly indicates that adequacy issues appear as of winter 2022/23
 - in highly interconnected markets, adequacy is a regional concern: all countries considered face adequacy issues simultaneously
 - hence, it appears that generation rather than transmission is the scarce resource at peak
 - to allow cross-border capacity sharing, coordination between national authorities is thus essential
- Measures to incentivize market based investment in generation capacity have thus to be taken immediately
 - Ad hoc out of market solutions will not solve the issue on a sustainable basis
 - We should seek a market based regional solution

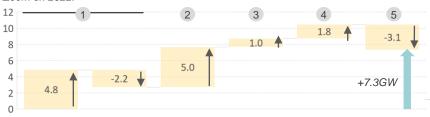
TRACTEBEL

Appendix

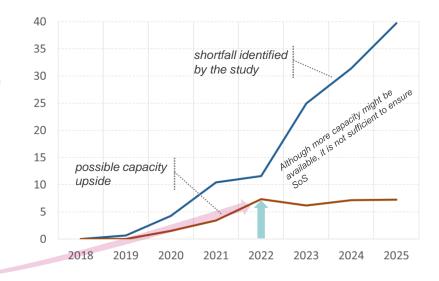
Recent Developments

Sensitivity Analysis: Recent information on coal (DE) and nuclear (FR) does not change the view that adequacy issues appear as of Winter 2022-23.

Recent Coal and Nuclear Developments



- Proposal on 26/01 of the Coal Commission for phasing out coal and lignite in Germany: updated view for the year 2022.
- 2 Possible increase of the Climate Reserve (Lignite) in Germany, as a result of the proposed coal phase-out.
- 3 Possible reconversion of Coal CHP to Gas CHP based on existing CHP law, as a result of the coal phase-out.
- 4 Announcement on 18/01 of the French government regarding nuclear capacity (PPE). 50% target postponed to 2035.
- 5 Uncertain nuclear availability. Risk of lower availability driven by maintenance with extended lifetime. A 5% lower availability is considered here.


Zoom on 2022:

TRACTEBEL

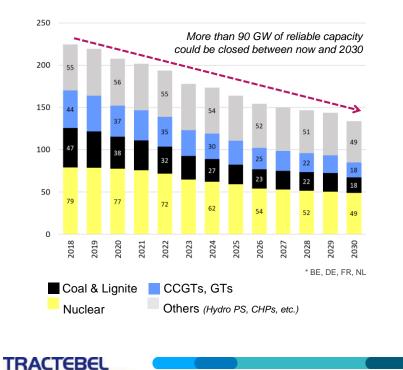
engie

Capacity availability risk vs. Investment needs [GW]

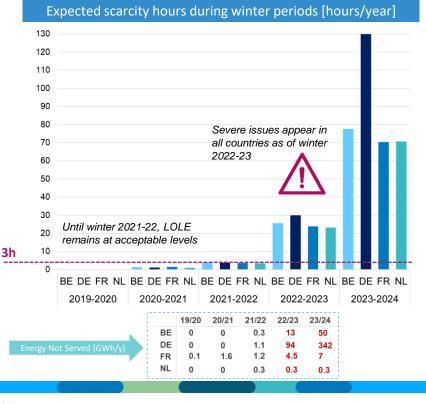
Total at CWE4 level

Recent studies only provide a partial view on adequacy.

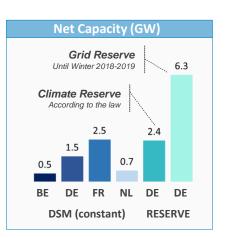
	Studies under the Analysis Scope	
Year	Title and Institution	
2015	Security of supply in Germany and its neighboring countries	cons <mark>en</mark> tec
2016	Adequacy & Flexibility Study 2017- 2027	Powering a world in progress
2017	Medium Adequacy Forecast 2017	entsoe
	Electricity Scenario for Belgium towards 2050	Powering a world in progress
2018	2° Pentalateral Report	PENTA
	Bilan Prévisionnel 2017	Rie
	Medium Adequacy Forecast 2018	


Key Insights

- No study assesses the adequacy of a country in isolation. Market interactions are in principle considered consistently, but there is little or no information on effective use of transmission capacity and availability of foreign generation capacity at peak.
- Studies are performed at different moments in time, explaining at least partially a diverging view on available capacity. In fact, the outlook especially on nuclear (FR) and coal (phase-outs) is highly uncertain.
- Studies do not necessarily consider all relevant years. Adequacy studies should consider all years between now and 2025, since important capacity reductions are foreseen/expected.

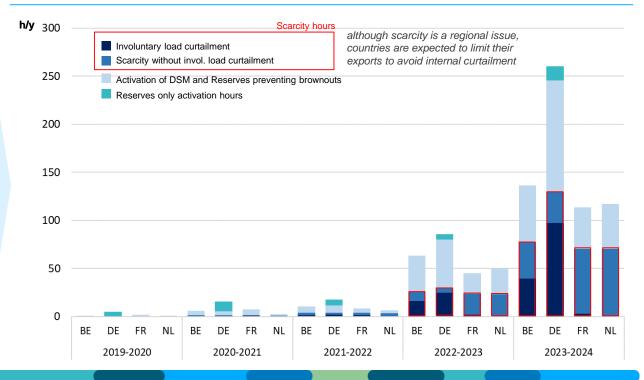

TRACTEBEL

Without further incentives to keep existing or to build new reliable capacity, severe adequacy issues appear as of <u>winter 2022/23</u>.

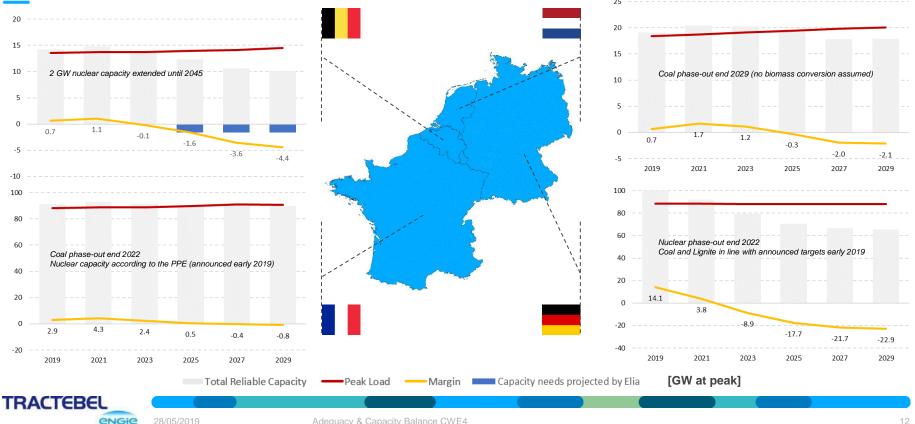

Capacity Evolution Existing Thermal & RES - CWE4* [GW]

engie

Reserves and DSM contribution to System Adequacy



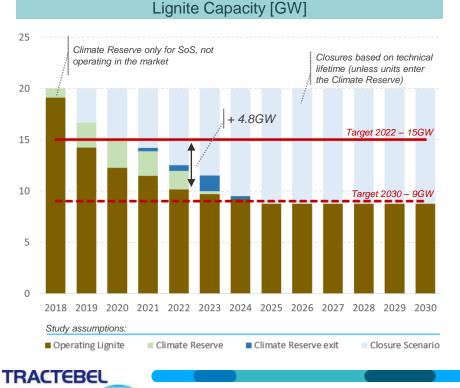
DSM potential available at peak based on SEDC - Smart Energy Demand Coalition: « Explicit Demand Response in Europe -Mapping the Market 2017"


engie

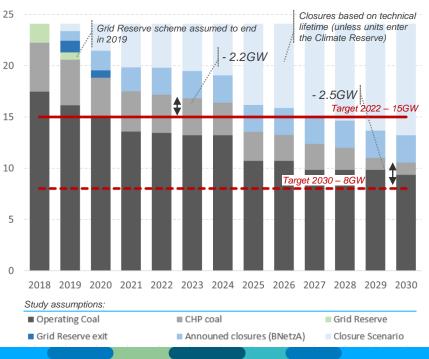
TRACTEBEL

Reserve and DSM activation hours

Overcapacity in CWE4 is quickly fading away Strong need for new reliable capacity expected as of 2022-23

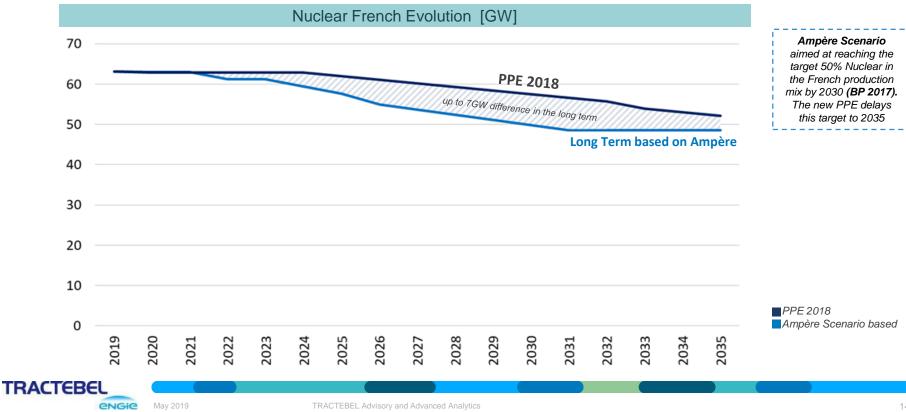

Adequacy & Capacity Balance CWE4

TRACTEBEL Advisory and Advanced Analytics


TRACTE

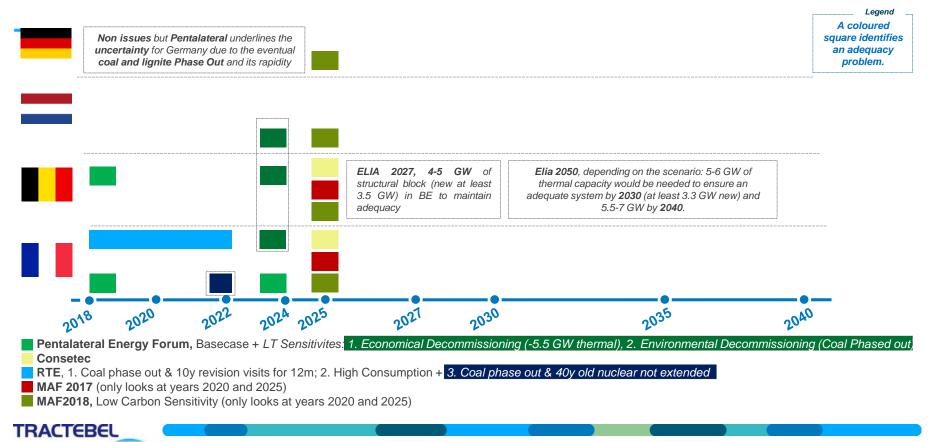
The German Coal Commission announced on 26/01/2019 targets for <u>operating</u> coal and lignite capacity by 2022&2030, with a complete phase-out by 2038 at the latest.

To what extend will current reserve schemes be extended to retain capacity leaving the market for SoS?

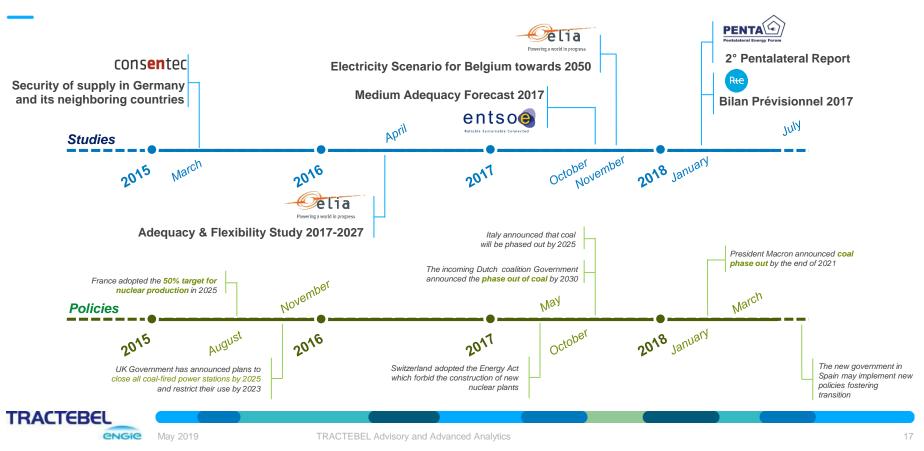


engie

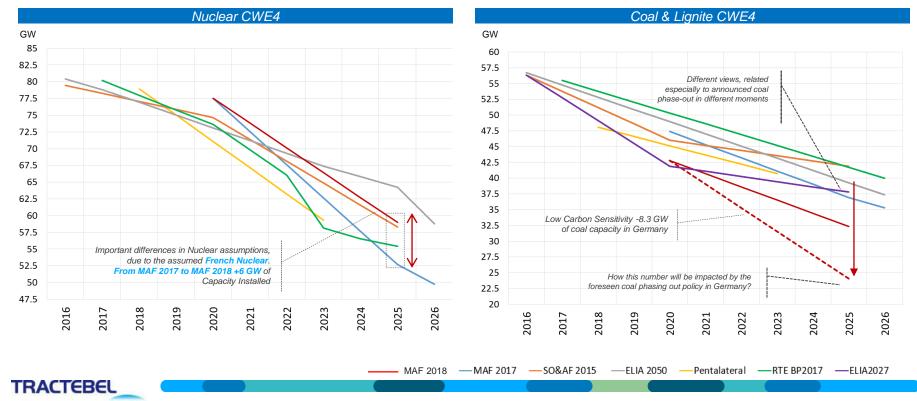
Coal Capacity [GW]


The French Government published on 25/01/2019 new long term projections for nuclear capacity (PPE).

- Recent studies on power system adequacy
- Study assumptions
- View on adequacy
- Detailed view on exchanges at scarcity
- Recent developments


TRACTEBEL

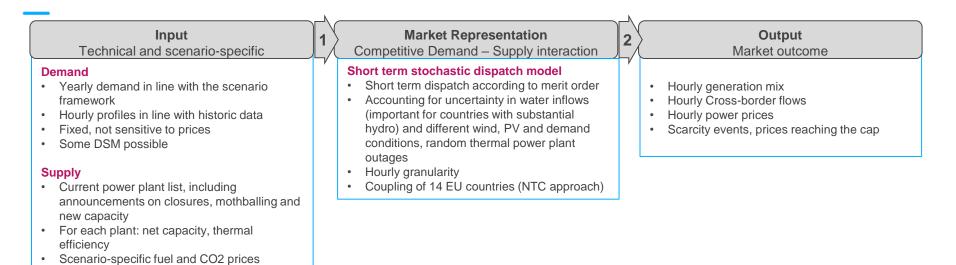
External studies provide a diverging view on adequacy.



Studies considered

Possible differences in adequacy assessment can be driven by different timings

The view on future nuclear and coal capacity has changed significantly over time – and will continue to do so in the coming years.


CNGiC May 2019

All studies consider interconnected systems, but there is little information on effective use of transmission capacity at peak.

		MAF 2018	MAF 2017	ELIA - 2017/2027	ELIA towards 2050	2° PLEF Report	RTE – BP 2017	CONSETEC 2015
	Countries & Geo Scope	Europe + Turkey	Europe + Turkey	Focus on Belgium, EU19	Focus on Belgium, EU22	Focus on <i>Pentalateral</i> Countries, EU + Turkey	Focus on France Interconnected Countries)	France, Benelux, Italy, Germany, Switzerland, Austria, Czech Republic, Poland, Nordics
	Current Installed	Nuclear: 78 (59) GW Coal: 43 (33) GW	Nuclear: 77 (53) [38] GW Coal: 47 (37) [29] GW in	Nuclear: 80 (76) [56] GW Coal: 56 (42) [38] GW in 2016 (2020) [2025]	Nuclear: 80 (52) [30] GW Coal: 56 (30) [15] GW in 2016 (2030) [2040]	Nuclear: 78 (59) GW Coal: 48 (41) GW in 2018 (2023)	Nuclear: 80 (49) GW Coal: 55 (24) GW in 2017 (2035)	SO&AF 2014
	Capacity in CWE4	in 2020 (2025)	2020 (2025) [2030]	Data from SO&AF 2015 , for CWE4 updated with national reports	In line w/ MAF2017 , for FR: BP2016 ,	In line w/ MAF2017 , for FR BP2017 , (exception load data)	In line w/ MAF2017 and the 2° PLEF	
	Sensitivities Scenarios	Low Carbon Sensitivity Scenario: ~23 GW removed from the 2025 base case scenario	Mothballing: Capacity at risk of being not available for economic or policy reasons excluded	1) GRID: + 2GW or isolated 2) High RES: 1.5*BC growth 3) Coal Phase out 4) Low Capacity for neighbors	1) Decentral: prosumers and high electrification. 1bis) High EV and hybrid HP 2) high RES: achieving long term climate policies. 2bis): +30 GW in interconnection in EU	 Decom. due to econ reasons Decom. due to envi reasons Reduced nuclear Additional Flexibilities Grid sensitivity 		
	Model	ANTARES, Bid, GRARE, Plexos, PowrSym	ANTARES, Bid, GRARE, Plexos	ANTARES	ANTARES	ANTARES, PowrSym	ANTARES	Cross-Border Market Simulation Model
	Meteorological Uncertainty	Climate conditions based on 34 historic years: Climate Database Entso-e PECD	Climate conditions based on 34 historic years: Climate Database Entso-e PECD	(40y) hrs wind prod timelines, PV schedules, daily temp. records, monthly column of hydro prod; availability parameters of thermal park	In line w/ MAF2017	In line w/ MAF2017	200 chronicles for Wind, PV and Temperatures (Meteo France: <i>ifferent from MAF</i>) and 6à chronicles for Hydro and Thermal	Weather year data 2010,2011,2012
	Contribution of foreign capacity	Data by TSOs are the max simultaneous import and export capacity per country		Max simultaneous import capacity of 6,5 GW.	Same as the Adequacy and Flexibility 2017-2027 ELIA study		From 2 to 15 GW of mport capacity (at least 8GW in 50% of cases)	
	Interconnections	Development in line with TSOs projects Flow based Approach	Development in line with TSOs projects for 2020	4,5 (6.5) GW in 2017 (2027). Sensitivities: up to 8,5 GW 2027, isolated 2017-2027)	Based on the TYNDP2016 + Federal Development Plan	MAF2017 Flow Based Approach SR NTC LR	TYNDP2016 Flow Based Approach	SO&AF 2014
FRA	CTEBEL							
	er	May 2019	TR	RACTEBEL Advisory an	d Advanced Analytics			

- Recent studies on power system adequacy
- Study assumptions
- View on adequacy
- Detailed view on exchanges at scarcity
- Recent developments

Modelling approach

May 2019

Policy driven capacity: RES development,

Existing Gas capacity (GTs and CCGTs

No endogenous management on existing

coal and nuclear phase-out

based on technical lifetime

No endogenous investment

engie

Asset Management

assets TRACTEBEL

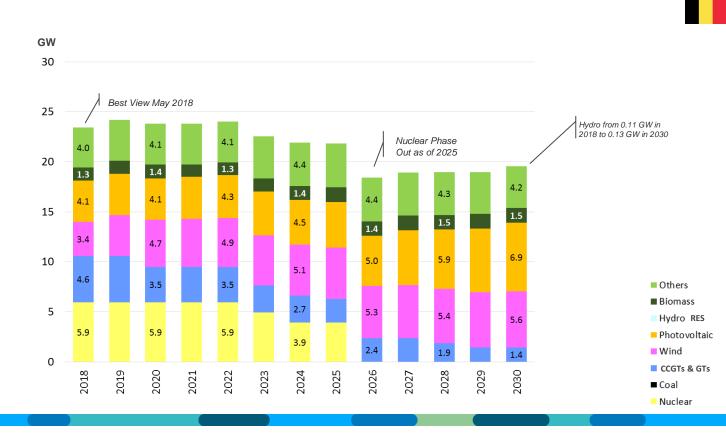

٠

.

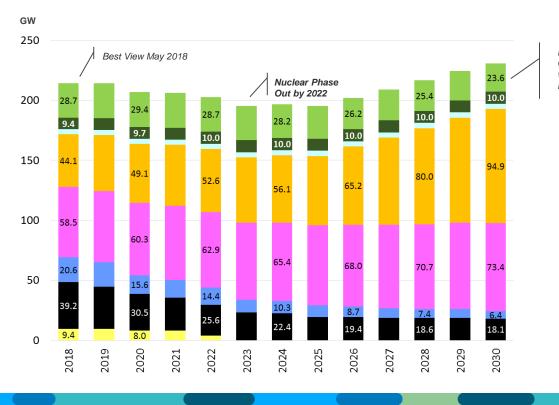
٠

٠

Geographical Scope: although focusing on Belgium, France, Germany and the Netherlands, the study considers the interaction of 14 countries.



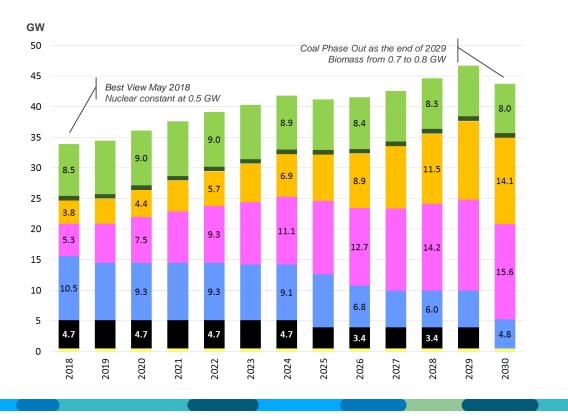
engie May 2019


TRACTEBEL

TRACTEBEL Advisory and Advanced Analytics

engie May 20

TRACTEBEL



Hydro from 4.13 to 4.45 GW **Coal and Lignite** are mostly in line with the Scenario C in the Netzentwicklungspläne

engie M

TRACTEBEL

Others
Biomass
Hydro RES
Photovoltaic
Wind
CCGTs & GTs
Coal
Nuclear

engie Ma

TRACTEBEL

European power markets are getting increasingly interconnected.

France

Country	From FR in 2018 (2030)	To FR in 2018 (2030)
Belgium	3300 (4300)	1800 (2800)
Germany	3000 (4800)	3000 (4800)
Great Britain	2000 (5400)	2000 (5400)
Italy (North)	2500 (3453)	1020 (1900)
Spain	2800 (8000)	2800 (8000)
Switzerland	3200 (3700)	1400 (1500)
	~+13GW	~+12GW

Germany

Country	From DE in 2018 (2030)	To DE in 2018 (2030)
Austria	2100 (7500)	5000 (7500)
Belgium	0 (1000)	0 (1000)
Czech Republic	1000 (2000)	1600 (2600)
Denmark	2600 (2600)	2865 (2865)
France	3000 (4800)	3000 (4800)
Norway	0 (1400)	0 (1400)
Poland	1500 (3000)	1500 (3000)
Sweden	600 (600)	610 (610)
Switzerland	2000 (3286)	4000 (5500)
The Netherlands	4250 (5000)	4250 (5000)
	~+14GW	~+11GW

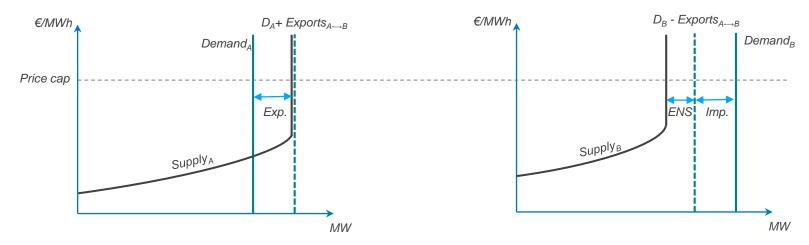
The Netherlands

Country	From NL in 2018 (2030)	To NL in 2018 (2030)
Belgium	2400 (3400)	1400 (3400)
Denmark	0 (700)	0 (700)
Germany	4250 (5000)	4250 (5000)
Great Britain	1000 (1000)	1000 (1000)
Norway	700 (1400)	700 (1400)
	~+3GW	~+4GW

Į	Country	From BE in 2018 (2030)	To BE in 2018 (2030)
ک	France	1800 (2800)	3300 (4300)
>	Germany	0 (1000)	0 (1000)
	Great Britain	0 (1000)	0 (1000)
	The Netherlands	1400 (3400)	2400 (3400)
		~+5GW	~+4GW

Average net transfer capacity [MW]

TRACT	EBEL
	engie


- Recent studies on power system adequacy
- Study assumptions
- View on adequacy
- Detailed view on exchanges at scarcity
- Recent developments

Definition of scarcity moments: there are net providers and net importers in highly interconnected markets.

Country A: Net provider of capacity

Country B: Net importer of capacity

Example where transmission capacity is not constraining

Country A has excess capacity. It exports to country B until it would have to curtail load as well.

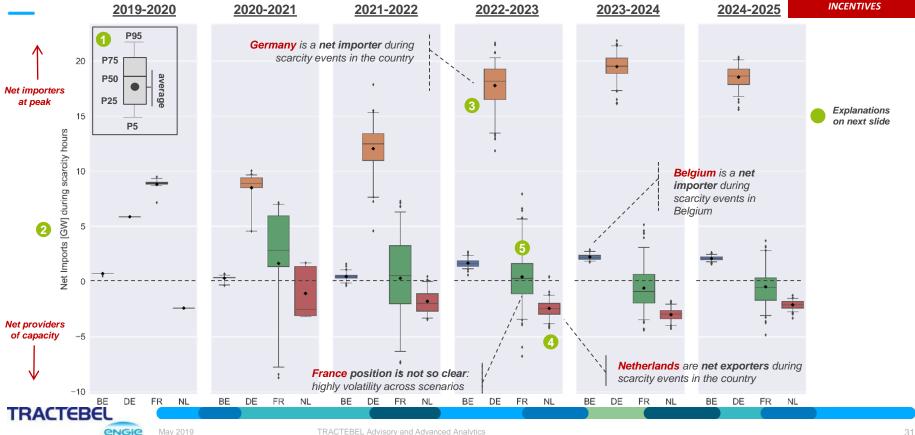
TRACTEBEL

engie

Country B has not enough reliable capacity to meet peak load. It imports from country A. Some load has to be curtailed.

All countries tend to experience scarcity simultaneously. Germany experiences more scarcity and decouples from the other countries

CASE WITHOUT FURTHER INCENTIVES

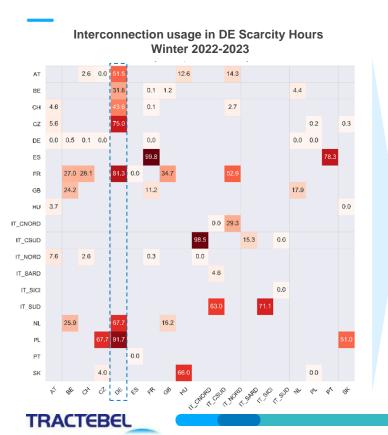

Legend

LOLE (hours)

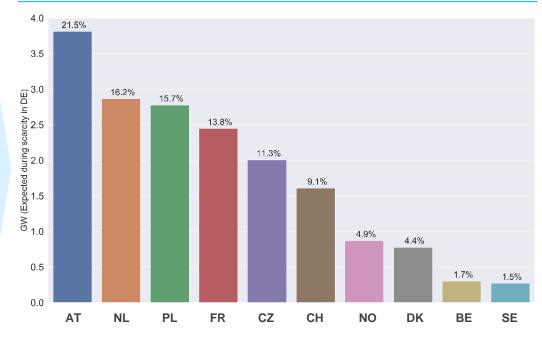
% of the time at scarcity that another country experiences scarcity too

Exchange balances in scarcity moments: exchange of capacity is high. There are net providers and net importers of capacity. CASE WITHOUT FURTHER

Exchange balances in scarcity moments Explanatory notes

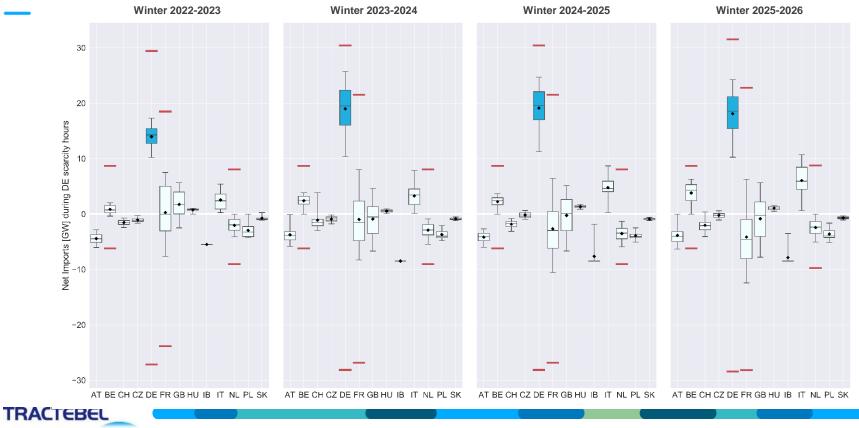

- 1 The state of the system can be very different for a given installed generation capacity. Because of meteorological conditions, wind and PV generation, water availability for hydro plants as well as power demand levels vary. Also, thermal power generation plants can be unavailable for unforeseen reasons. Studying adequacy issues requires thus a probabilistic approach.
- 2 We consider the distribution of the net exchange balance during system stress, i.e. when the tight demand/supply balance is tight, leading to power prices reaching the cap. Until winter 2021-22, only a few hours are concerned.
- 3 Whatever the conditions, Germany is always a net importer in system stress. It imports more than it exports. Main reasons are the nuclear phase-out by end of 2022 and coal closures. Belgium is also a net importer in almost all situations.
- 4 The Netherlands are relatively abundant in generation capacity. They are net providers of capacity to the neighboring countries in system stress. Generation capacity is shared up to the moment where demand would have to be curtailed in the Netherlands too.
- 5 France is in an intermediate position. It can benefit from excess capacity in Spain (not shown on the graph), but capacity is also leaking to Belgium and Germany.

In general, we find that interconnection capacity is often not saturated. See slides in appendix. Hence, generation and not transmission capacity turns out to be the scarce resource.



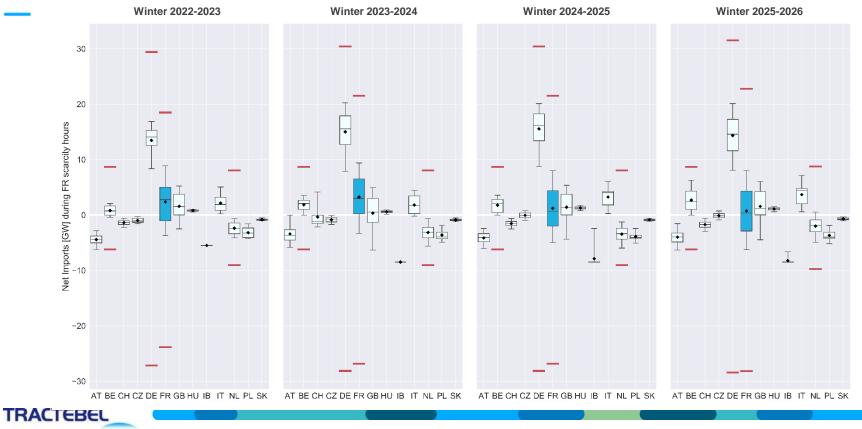
Countries' balances reflect an interconnected network

DE expected imports balance during scarcity hours

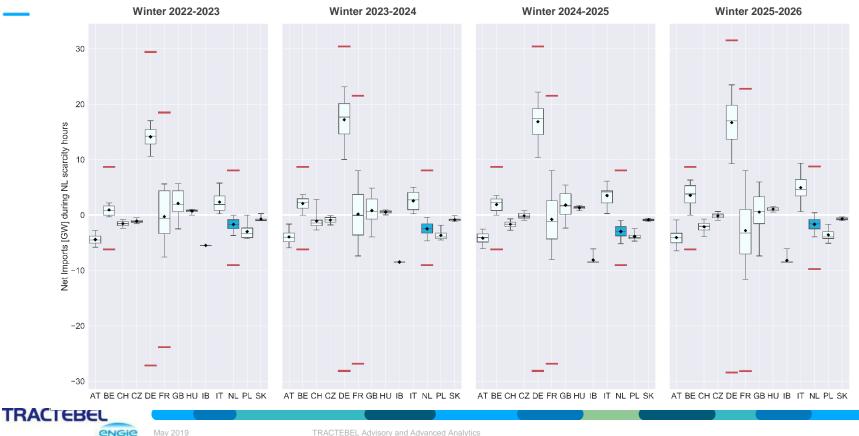

engie May 2019

- Recent studies on power system adequacy
- Study assumptions
- View on adequacy
- Detailed view on exchanges at scarcity
- Recent developments

Exchange balances during scarcity events in Belgium



Exchange balances during scarcity events in Germany



engie May 201

Exchange balances during scarcity events in France

Exchange balances during scarcity events in the Netherlands

4.4

0.2

0.0 0.0

17.9

0.0

0.0

0.0

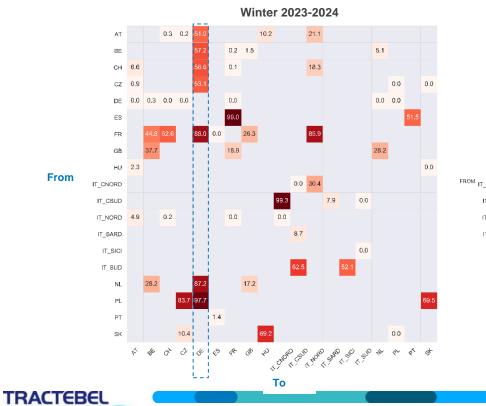
à

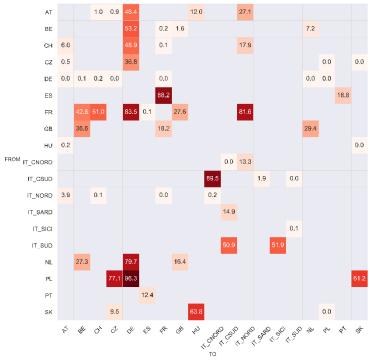
Å

0.3

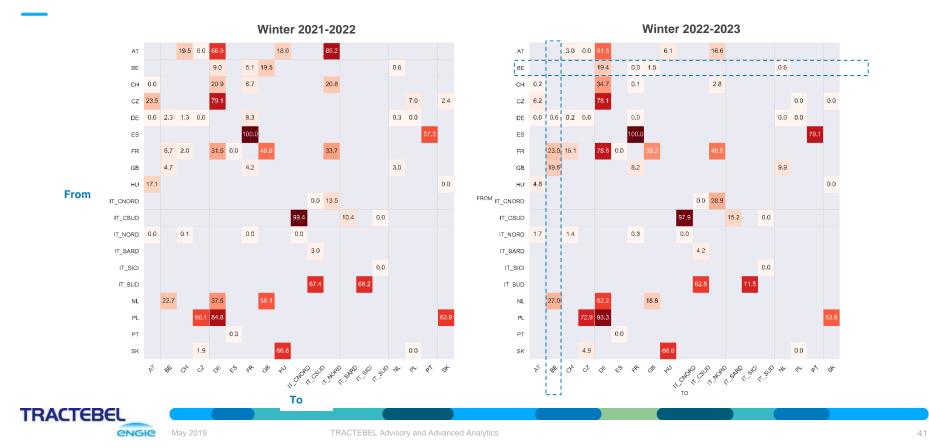
0.0

engie


Average interconnection usage during Scarcity Hours in Germany


engie

Average interconnection usage during Scarcity Hours in Germany


TRACTEBEL Advisory and Advanced Analytics

Winter 2024-2025

Average interconnection usage during Scarcity Hours in Belgium

0.8

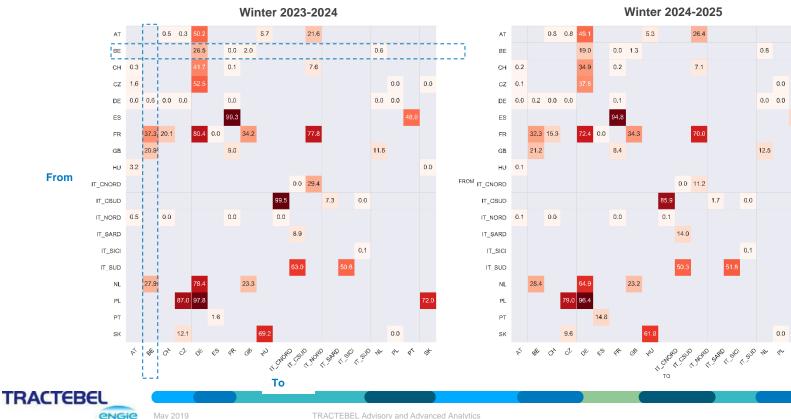
0.0

0.0

0.0 0.0

12.5

0.0


0.1

0.0

0.0

14.4

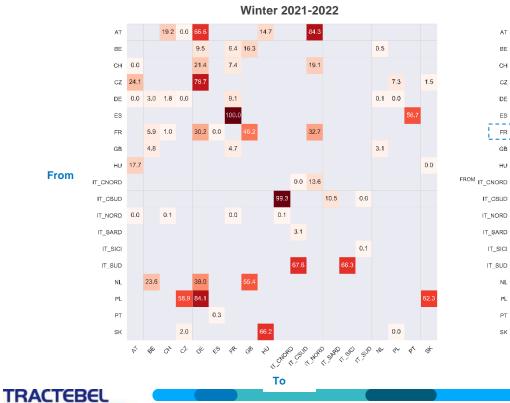
Average interconnection usage during Scarcity Hours in Belgium

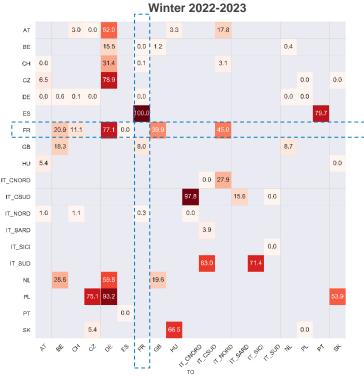
Winter 2024-2025

26.4

7.1

0.0 11.2

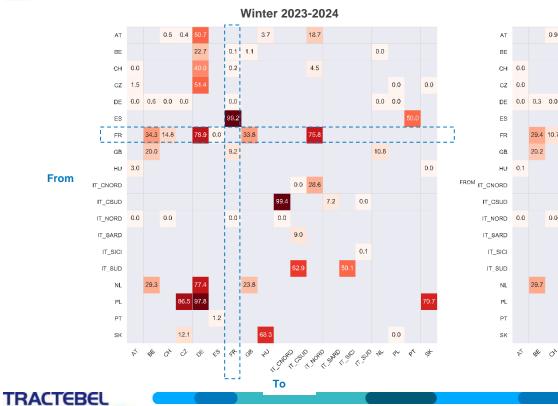

14.0

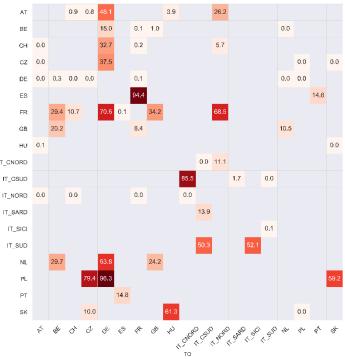

50.3

85.9

1.7

Average interconnection usage during Scarcity Hours in France




engie

Average interconnection usage during Scarcity Hours in France

TRACTEBEL Advisory and Advanced Analytics

Winter 2024-2025

0.1

0.0 0.0

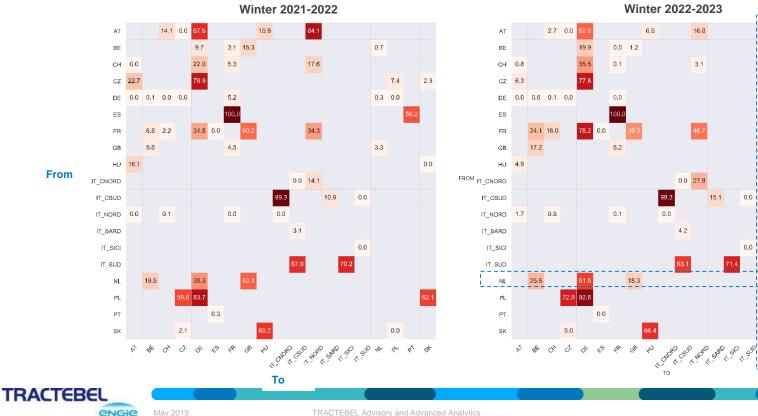
0.6

0.0

0.0

0.0

at

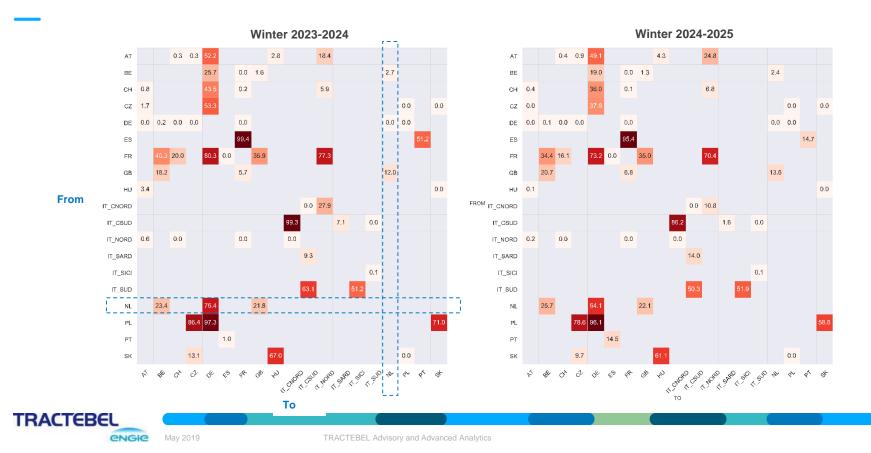

2

0.1

0.0

80.2

Average interconnection usage during Scarcity Hours in NL


15.1

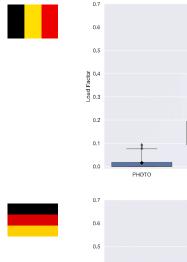
16.8

3.1

46

Average interconnection usage during Scarcity Hours in NL

"Low-Cost" capacity development potential CWE4

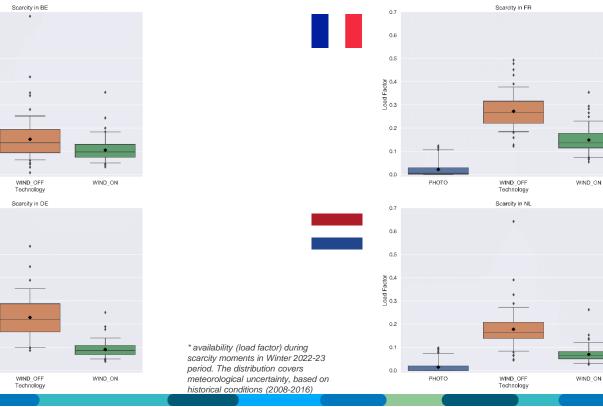


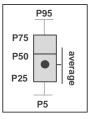
The potential is based on an economic assessment where future expected margins (inframarginal and scarcity rents) cover at least the necessary CAPEX. Scarcity rent can be captured through price spikes in an energy-only market (EOM) environment or via capacity payments in CRM. However, from a risk perspective, it is questionable whether more CAPEX intensive decisions (Brownfield CCGT > CCGT LT extension > GT reconversion) will happen in EOM without long term contracts.

TRACTEBEL

May 2019

Contribution of renewables in scarcity moments* PV close to 0% while wind onshore rather 10% (more in FR, less in NL)


0.4 Factor


0.2

0.1

0.0

TRACTEBEL

engie May 2019

PHOTO