

Centre Energie - Centre for Energy

Sub-Saharan Africa's electricity challenges and opportunities

1. Electricity access in SSA: status and challenges to meet the SDG of universal access by 2030

Population increase is stronger than energy access progress

Number of people with and without electricity in Sub saharan Africa (without South Africa)

Number of people electrified in Sub-saharan Africa (without South Africa)

Population Total

Electricity access challenge unaddressed: around 550 millions without access, 700 million without clean cooking

Access to electricity (% of population) in 2016

in YouTube

Tiny installed power generation capacity, less than Germany

Installed capacity, actual and projected population

When there is access, power outages impede economic

activities Power outages in a typical month (indicative)

2017 renewable investment high but too little in Africa, especially solar PV where the potential is strongest

Global RES investments in 2017 in key countries (\$ billion)

Global RES investments in 2017 by technologies (\$ billion)

2,5 times more power sector investments needed per year, private sector investment is dominated by South Africa

Power sector investments in Sub-Saharan Africa, 2013-2016 (\$ billion)

2. Opportunities, options and solutions: stepping up efforts and progress to another scale

The toolbox and options: supply side

- Solar (PV and CSP) and onshore wind potential with sharply declining costs
 - Centralized, coupled with batteries
 - Decentralized: mini/micro-grids and individual solar home systems; private or publicly supported
- Biomass potential: small biogas digesters
- Gas fired thermal plants:
 - LNG to power
 - Gas flaring capture, utilization of local gas production
- Hydro: large, small, mini dams, can be covered by solar cells
- Grid extension, interconnections
- Waste to energy: large untaped potential, only one plant operational (Ethiopia)

10

Nuclear?

The toolbox and options: demand side

- Capacity building in EE indicators
- Energy efficiency in buildings: standards, best practices
- Standards for appliances at regional level
- Centralized cooling systems instead of individual air conditionning
- Designing efficient and sustainable cities/urban areas
 - Avoid urban heat island effects
 - Improved and sustainable public transportation
 - Better fuel quality standards, more efficient cars&motorcycles
 - Electric mobility
 - Capacity building, knowledge sharing
 - Standards and controls
 - Slow down of urbanization with country side development & climate mitigation

LNG to power is an option, but no game changer

Main proposed LNG import terminals in Sub-Saharan Africa

Hydro has a further potential

Top 5 African countries by installed hydropower capacity (2016)	MW
Ethiopia	4 054
South Africa	3 583
Egypt	2 800
DR Congo	2 509
Zambia	2 392

Source: Hydroworld. Hydropower Status Report 2017, International Hydropower Association. Renewable Power Generation Costs in 2017, IRENA.

- Technical potential of hydropower production of about 1 800 TWh/y, compared with 1,238 TWh in 2015.
- Total installed capacity of about 34 GW
- In Africa, large hydropower project have an average LCOE of about 0,05\$/kWh and about 0,07-0,08\$/kWh for small project
- Projects: Ivory coast (Singrobo, Gribo Popoli), Tanzania (Rusumo falls), Uganda, Ethiopia (Renaissance), DRCongo (Inga)...

Lessons from India and Bangladesh

- > Need to plan for maintenance of system, especially when financed via grants
- > Pay as you go systems to avoid non-payments
- Mini grids: Not necessarily enough electricity to meet demand from small industries; systems often not well designed for demand;
- Entrepreneurs looking to develop mini-grids project to un-electrified rural India control risks such as revenue collection problems, or theft associated risks by tailoring each project's business model...but:
 - What happens if the central grid reaches a mini-grid?
 - Customers would switch to the main grid to benefit from lower government subsidized electricity prices.
 - Entrepreneurs would be left with stranded assets.
- ➤ Need for an efficient and stable regulatory framework
- > Business models can be diverse, but effective when including services
- ➤ Need for strong governmental support, political will, availability of finance and local& micro-finance
- > Need to overcome the investment challenge: high capital costs, short term risk takers, high RR
- ➤ Local communities & people must be involved at all stages to define technoloy, needs, business model (pay as you go, ESCO model)
- Feasibility studies key

International initiatives helpful but only private sector investments can scale up electrification

- ✓ UN Sustainable Development Goals (2015)- Sustainable Energy for All (SE4All), hosted by ADB
- ✓ NEPAD, Programme for Infrastructure Development in Africa (African Union/ADB), focusing on eight African regions
- ✓ World Bank
- ✓ Power Africa
- ✓ Sutainable Energy Fund for Africa
- ✓ African Development Bank (ADB)/ The New Deal for Energy in Africa (2015): full electricity access by 2025
- ✓ Electrification Financing Initiative (ElectriFI) European Union
- ✓ Partenariat Afrique-UE pour l'énergie (PAEE)
- ✓ Bilateral development aid and support programmes (Afd, Norad, GIZ, DevCo)

All key to provide funding and structure bankable projects, but slow, unefficient, insufficient...

Conclusion 1/2: scaling up and accelerating RES is now possible, need of greater private investment

- ✓ No silver bullet, no unique solution: combination of technologies, business models tailored to specific needs
- ✓ Combination of demand side and supply side measures needed!
- ✓ Technical conditions are in place: innovations, technology costs are down, business models work, best practices and numerous pilot projects & larger scale deployment exist
- ✓ Foreign aid, grants, guarantees and credits are important but will not be enough and cannot be enough
- ✓ Need for much greater private investment
- ✓ Need to make more cheap funding available
- ✓ Private entrepreneurship is already successful!
- ✓ Need of greater coordination among donors and greater focus on Sub-Saharan Africa
- ✓ Need to overcome the finance bottleneck with a reform of the global financial system

Conclusion 2/2: Local governments must do more, need for strategic approach with climate adaption

- ➤ Governance of public institutions and state-owned companies
- > Investment framework: robust banking and financial sector
- ➤ Regional cooperation and interconnections, capacity building at the local, national and regional level
- > Regulation, land registries
- ➤ Need for tariff reforms
- Improved tax collection, higher saving rate, higher share of domestic investments key, especially of pension funds

